An Enhanced DNA-based Steganography Technique with a Higher Hiding Capacity

Link to full Paper

Abstract: DNA-based Steganography is one of the promising techniques to secure data exchange, where data is hidden into a real DNA sequence. For the sake of security, some steganography techniques encrypt data before hiding it which strengthen the technique’s steganalysis. One of the widely used encryption techniques is the DNAbased playfair cipher. This technique intensively requires a long list of preprocessing steps in addition to extra bits which must be added to guarantee successful decryption. Nevertheless, the succeeding hiding step suffers from a limited capacity, which turns this current DNA-based Steganography technique into a complex, inefficient, and time consuming process. In this paper, we propose a new DNA-based Steganography algorithm to simplify the current technique as well as achieve higher hiding capacity. In the proposed algorithm, we enhance the commonly used playfair cipher by defining a novel short sequence of preprocessing steps and getting rid of the extra overhead bits. We also utilize a more efficient technique to enhance the hiding phase. The proposed approach is not only simple and fast but also provides a significantly higher hiding capacity with a high security. The conducted extensive experimental studies confirm the outstanding performance of the proposed algorithm.